If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+34y+45=0
a = 5; b = 34; c = +45;
Δ = b2-4ac
Δ = 342-4·5·45
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-16}{2*5}=\frac{-50}{10} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+16}{2*5}=\frac{-18}{10} =-1+4/5 $
| q+2=22 | | 4y−y=9 | | p=7(9) | | h-8=24 | | 4y-4+3=52 | | 8(6x+2)=8(x+3) | | 3r=10r-28 | | 970x-480=1.585 | | a-a-3=0 | | 8p-8=-4p+16 | | X+2x+(4x+13)=95 | | (4x-12)(4x-12)=1600 | | 2(8s+2)=6(2s+1)+3s | | 0=2t^2-13t-7 | | 4-6x+12=3x-10 | | -8+9x=10 | | 2b−7=3 | | 1-8v=1 | | 1−2z=-1 | | X+3x+(3x+12)=96 | | 1.2/3.6=x/3 | | -4=6v-4 | | -6-6v=54 | | -2t=3t+5 | | -27=9+4c | | 4x+3=2-+11 | | z÷7+9=5 | | 3(2d+7=39 | | -4n+5-0n=1 | | 25+5x=44 | | 7p+4=137 | | (3x-30)+135=180 |